
neato User's Guide

Stephen C. North

AT&T Bell Laboratories
Murray Hill, NJ

1 Introduction

neato is a utility that draws undirected graphs, that are common in telecommunications
and computer programming. It draws a graph by constructing a virtual physical model
and running an iterative solver to �nd a low-energy con�guration. Following an approach
proposed by Kamada and Kawai [KK89], an ideal spring is placed between every pair of
nodes such that its length is set to the shortest path distance between the endpoints. The
springs push the nodes so their geometric distance in the layout approximates their path
distance in the graph. This often yields reasonable layouts [Ead84][FR91].

neato is compatible with the directed graph drawing program dot in sharing the same
input �le format and graphics drivers [KN91]. Since the �le format includes both undirected
and directed graphs, neato draws graphs prepared for dot, and vice versa. Both programs
have the same options for setting labels, colors, shapes, text fonts, and pagination, and for
generating code in common graphics languages (presently PostScript, FrameMaker MIF,
and HPGL/2). Both work with dotty, an interactive graph viewer for X windows. It may
be reasonable to combine these programs eventually.

Figs. 1{4 are representative examples of neato's output. The timings refer to user time
on an HP-9000/730 server. Fig. 1 was derived from a hand-made drawing in an operating
system tutorial. Fig. 2 shows the connectivity of a computer network. Fig. 3 shows the

graph G {

run -- intr;

intr -- runbl;

runbl -- run;

run -- kernel;

kernel -- zombie;

kernel -- sleep;

kernel -- runmem;

sleep -- swap;

swap -- runswap;

runswap -- new;

runswap -- runmem;

new -- runmem;

sleep -- runmem;

}

run

intr

runbl

kernel

sleep

runmem

zombie

swap

runswap

new

Figure 1: Process States in an Operating System Kernel (0.08 seconds)

neato User's Manual, October 14, 1992



neato User's Guide 2

sharing of programmer-de�ned types between procedures in a C program. The program
that was the source of this graph parses a text �le into an internal data structure. The
graph was extracted from a C program database. Its drawing shows where interactions or
conversions between types may occur. Finally, Fig. 4 shows relationships between IMRs
shipped to the �eld in an externally released software product.1 The labeled nodes are
IMRs and the small circles re
ect many-to-many dependencies.

MH

ERC

ALC

WH1

HO1IH1

MV

HO3

HR

CB
HV

IHC

IH4

IH2

IHP

IW

AN

MT

LZ

FJ

ER

DR

FL

MLM

Figure 2: R&D Internet Backbone (0.35 seconds)

1Graph courtesy of J. Hoshen, Dept. 55554.

neato User's Manual, October 14, 1992



neato User's Guide 3

check_buffer

main
out_heading

prefix

info

rel

out_rel

out_data

check_fopen

check_fclose

fill_spec_table

match

open_source

spec_heading

spec_data init_spec_table

Figure 3: Type Sharing Between Procedures in a C Program (0.41 seconds)

341411

358866

358930
371943

374300

371942

374700

374741

374886

375039

375507

375508

375519

377380

377719

377763

379848

380571

380604

381211

381835

381897

381901

382103

382161

383174

352010382409

382827

382928

358224

358900

372568

375557

376956

379339

379422

383039

359471

384096

354290
379864

382574

370706377908

377924
377971

377980

378362

378656

378666

379169

379341

379972

380298

380448

380475

380526

357430

379968

359100

376529

377801

379126

379212

380285

380963

384909

358471

375024

375027

381710
381775

382436
382528

382566

382572

353506

370509

370510

354546

354757

354766

354771

354785

354878355080

355288

355800

356116

356741

357340357538

357769
357793

358155

358157

358159

358584

360104

360144

360672

360839

371187

373300

375134

375319

375499

377220

377562

378108

354221

Figure 4: IMR Dependencies (44.1 seconds)

neato User's Manual, October 14, 1992



neato User's Guide 4

$ cat example.dot

graph G {

n0 -- n1 -- n2 -- n3 -- n0;

}

$ neato -Tps example.dot -o example.ps

n0

n1

n3

n2

Figure 5: Example Graph Drawing

2 Graph Drawing

2.1 Basic Commands

The remainder of this memo gives a synopsis of neato features. Many of these should be
familiar to users of dot. Fig. 5 shows a graph �le, its drawing, and the command that
was executed. A graph �le has a short header and a body consisting of nodes, edges, and
attribute assignments. By default, nodes are drawn as ellipses labeled with node names.
Undirected edges are created by the -- operator. Edges are drawn as straight lines and
tend to be all about the same length.

2.2 Drawing Options

Table 1 lists the graph, node and edge attributes that a�ect the layout. The options to set
labels, shapes, fonts, and sizes are convenient for many kinds of layouts. The drawing in
�gure 6 illustrates some of these features.2 Options to set the size of the drawing, pagination,
and output graphics language are also the same as in dot.

3 Adjusting Layouts

Although layouts made by neato are close to a local optimum as de�ned by the forces the
springs exert on the nodes, �ne tuning or generation of alternative layouts may improve
readability. Because neato uses unconstrained optimization, it does not enforce minimum
separation constraints between nodes or between edges and nonadjacent nodes, so in dense
graphs nodes and edges can be too close or overlap. There are three ways of trying to
correct these errors:

2Graph courtesy of Hector Zamora, DEFINITY.

neato User's Manual, October 14, 1992



neato User's Guide 5

A1

A2

A

l #6

A3

l #7

l #8

B

l #1

C

l #2

D

l #3

E

l #4

F

l #5

l #1

l #2

l #3

l #1

l #1

graph G {

node [shape=box,style=filled];

{node [width=.3,height=.3,shape=octagon,style=filled,color=skyblue] A1 A2 A3}

A -- A1 [label="l #6"];

A -- A2 [label="l #7"];

A -- A3 [label="l #8"];

{edge [style=invis]; A1 -- A2 -- A3}

edge [len=3]; /* applies to all following edges */

A -- B [label="l #1"]; A -- C [label="l #2"]; A -- D [label="l #3"];

A -- E [label="l #4"]; A -- F [label="l #5"]; B -- C [label="l #1"];

B -- E [label="l #2"]; B -- F [label="l #3"]; C -- D [label="l #1"];

D -- E [label="l #1"];

}

Figure 6: Node and Edge Options

neato User's Manual, October 14, 1992



neato User's Guide 6

1) change the initial con�guration

2) adjust the solver parameters

3) edit the input edge lengths and weights.

3.1 Initial Con�guration

If no options are given, neato always makes the same drawing of a given graph �le, because
its initial node placement and the solver are deterministic. Random initial placement can
yield di�erent layouts. It is sometimes reasonable to make at least several di�erent trial
layouts, and accept the best one. Random initial placement is requested by setting the
value of the graph attribute start. If the value is a number, it is taken as a seed for the
random number generator. The layout is di�erent for each seed, but still deterministic. If
the value is not a number, the process ID or current time is used. Each run potentially
yields a di�erent drawing. For example:

$ neato -Tps -Gstart=rand file.dot > file.ps

3.2 Termination Threshold

The solver is a Newton-Raphson algorithm that moves a node with a maximal �e on every
iteration. The solver terminates when �e falls below some �. The default (:1) is low enough
that the layout is usually close to a local minimum, but not so low that the solver runs for
a long time without making signi�cant progress. Smaller values of � allow the solver run
longer and potentially give better layouts. Larger values can decrease neato's running time
but with a reduction in layout quality. This may be a desirable tradeo� for large graphs. �

is set in the graph's epsilon variable. It is convenient to do this on the command line:

$ neato -Tps -Gepsilon=.001 small.dot -o small.ps

$ neato -Tps -Gepsilon=1.5 big.dot -o big.ps

3.3 Edge Lengths and Weights

Since the layout depends on the input edge lengths and their weights, these can sometimes
be adjusted to good e�ect. The length of an edge is the preferred distance between the
endpoint nodes. Its weight is the strength of the corresponding spring, and a�ects the
cost if it is stretched or compressed. Invisible edges can also be inserted to adjust node
placement. In �gure 6, the length of some edges was set to 3 to make them longer than the
default. Also, the two invisible edges a�ect A1, A2, and A3.

There is also a way to also give the initial or �nal coordinates of individual nodes. The
initial position, formatted as two comma-separated numbers, is entered in a node's pos

attribute. If ! is given as a su�x, the node is also pinned down.

neato User's Manual, October 14, 1992



neato User's Guide 7

graph G {

n0 -- n1 [len=2, style=bold];

n1 -- n2 -- n3 -- n0;

}
n0

n1

n3

n2

Figure 7: Example graph with an edge stretched

graph G {

n0 [ pos = "0,0!" ];

n1 [ pos = "2,0" ];

n2 [ pos = "2,2!" ];

n0 -- n1 -- n2 -- n3 -- n0;

}
n0

n1

n3

n2

Figure 8: Example graph with nodes pinned

4 Future Work

To improve clarity we would like to eliminate unintentionally overlapping nodes or edges.
Such errors could be avoided by using constraints. Constraints could also o�er users a
natural way to adjust layouts. One concern in introducing constrained optimization is that
we want to maintain interactive response time for moderate sized graphs.

Another idea is to use a more straightforward layout heuristic based on graph topology.
One approach often mentioned by researchers but seldom (if ever) implemented is to embed
a maximal planar subgraph, then route any remaining edges heuristically. We also intend
to eventually replace the straight line edges with splines that can bend around non-adjacent
nodes or edge labels.

neato User's Manual, October 14, 1992



neato User's Guide 8

5 Acknowledgments

neato's layout heuristic follows the work of Kamada and Kawai [KK89]. The implementa-
tion was originally part of the salem 3D viewer for mathematical structures written with
David Dobkin and Nathaniel Thurston. In converting neato to a more traditional tool, the
graphics code generator was borrowed from dot. This includes code contributed by John
Ellson and Emden Gansner. Steve Eick was an early user and o�ered some good suggestions
about ways to adjust layouts.

neato User's Manual, October 14, 1992



neato User's Guide 9

*

neato User's Manual, October 14, 1992



neato User's Guide 10

Name Default Values

Node Attributes

shape ellipse ellipse, box, circle, doublecircle, diamond,
plaintext, record, polygon

height,width .5,.75 height and width in inches
label node name any string
fontsize 14 point size of label
fontname Times-Roman font family name, e.g. Courier, Helvetica

fontcolor black type face color
style graphics options, e.g. bold, dotted, filled

color black node shape color
pos initial coordinates (append ! to pin node)

Edge Attributes

weight 1.0 strength of edge spring
label label, if not empty
fontsize 14 point size of label
fontname Times-Roman font family name
fontcolor black type face color
style graphics options, e.g. bold, dotted, dashed

color black edge stroke color
len 1.0 preferred length of edge
dir none forward, back, both, or none
decorate if set, draws a line connecting labels with their edges
id optional value to distinguish multiple edges

Graph Attributes

start seed for random number generator
size drawing bounding box, in inches
page unit of pagination, e.g. 8.5,11
margin .5,.5 margin included in page

label caption for graph drawing
fontsize 14 point size of label
fontname Times-Roman font family name
fontcolor black type face color
orientation portrait may be set to landscape

center when set, centers drawing on page

Table 1: Drawing attributes

neato User's Manual, October 14, 1992



neato User's Guide 11

References

[Ead84] Peter Eades. A Heuristic for Graph Drawing. In Congressus Numerantium, vol-
ume 42, pages 149{160, 1984.

[FR91] Thomas M. J. Fruchterman and Edward M. Reingold. Graph Drawing by Force-
directed Placement. Software{ Practice and Experience, 21(11):1129{1164, Novem-
ber 1991.

[KK89] T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs.
Information Processing Letters, 31(1):7{15, April 1989.

[KN91] Eleftherios Koutso�os and Stephen North. Drawing graphs with dot. Technical
Report 910904-59113-08TM, AT&T Bell Laboratories, Murray Hill, NJ, September
1991.

neato User's Manual, October 14, 1992



neato User's Guide

Stephen C. North

AT&T Bell Laboratories
Murray Hill, NJ

ABSTRACT

neato is a program that makes layouts of undirected graphs following the �lter model of
dag and dot. Its layout heuristic creates virtual physical models and runs an iterative
solver to �nd low energy con�gurations. The intended applications are in telecommunica-
tion networks, computer programming and software engineering. Here is a sample layout
depicting a typical entity-relationship database schema. It took 0.11 seconds of user time
to generate on an HP-9000/730 computer.

course

name

code

C-I

n

S-C

n

institute

name

1

S-I

1

student

name
grade

number
m

n

neato User's Manual, October 14, 1992


