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1 Introduction

neato is a utility that draws undirected graphs, that are common in telecommunications
and computer programming. It draws a graph by constructing a virtual physical model
and running an iterative solver to �nd a low-energy con�guration. Following an approach
proposed by Kamada and Kawai [KK89], an ideal spring is placed between every pair of
nodes such that its length is set to the shortest path distance between the endpoints. The
springs push the nodes so their geometric distance in the layout approximates their path
distance in the graph. This often yields reasonable layouts [Ead84][FR91].

neato is compatible with the directed graph drawing program dot in sharing the same
input �le format and graphics drivers [KN91]. Since the �le format includes both undirected
and directed graphs, neato draws graphs prepared for dot, and vice versa. Both programs
have the same options for setting labels, colors, shapes, text fonts, and pagination, and for
generating code in common graphics languages (presently PostScript, FrameMaker MIF,
and HPGL/2). Both work with dotty, an interactive graph viewer for X windows. It may
be reasonable to combine these programs eventually.

Figs. 1{4 are representative examples of neato's output. The timings refer to user time
on an HP-9000/730 server. Fig. 1 was derived from a hand-made drawing in an operating
system tutorial. Fig. 2 shows the connectivity of a computer network. Fig. 3 shows the

graph G {

run -- intr;

intr -- runbl;

runbl -- run;

run -- kernel;

kernel -- zombie;

kernel -- sleep;

kernel -- runmem;

sleep -- swap;

swap -- runswap;

runswap -- new;

runswap -- runmem;

new -- runmem;

sleep -- runmem;

}
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Figure 1: Process States in an Operating System Kernel (0.08 seconds)
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sharing of programmer-de�ned types between procedures in a C program. The program
that was the source of this graph parses a text �le into an internal data structure. The
graph was extracted from a C program database. Its drawing shows where interactions or
conversions between types may occur. Finally, Fig. 4 shows relationships between IMRs
shipped to the �eld in an externally released software product.1 The labeled nodes are
IMRs and the small circles re
ect many-to-many dependencies.
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Figure 2: R&D Internet Backbone (0.35 seconds)

1Graph courtesy of J. Hoshen, Dept. 55554.
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Figure 3: Type Sharing Between Procedures in a C Program (0.41 seconds)
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Figure 4: IMR Dependencies (44.1 seconds)
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$ cat example.dot

graph G {

n0 -- n1 -- n2 -- n3 -- n0;

}

$ neato -Tps example.dot -o example.ps

n0

n1

n3

n2

Figure 5: Example Graph Drawing

2 Graph Drawing

2.1 Basic Commands

The remainder of this memo gives a synopsis of neato features. Many of these should be
familiar to users of dot. Fig. 5 shows a graph �le, its drawing, and the command that
was executed. A graph �le has a short header and a body consisting of nodes, edges, and
attribute assignments. By default, nodes are drawn as ellipses labeled with node names.
Undirected edges are created by the -- operator. Edges are drawn as straight lines and
tend to be all about the same length.

2.2 Drawing Options

Table 1 lists the graph, node and edge attributes that a�ect the layout. The options to set
labels, shapes, fonts, and sizes are convenient for many kinds of layouts. The drawing in
�gure 6 illustrates some of these features.2 Options to set the size of the drawing, pagination,
and output graphics language are also the same as in dot.

3 Adjusting Layouts

Although layouts made by neato are close to a local optimum as de�ned by the forces the
springs exert on the nodes, �ne tuning or generation of alternative layouts may improve
readability. Because neato uses unconstrained optimization, it does not enforce minimum
separation constraints between nodes or between edges and nonadjacent nodes, so in dense
graphs nodes and edges can be too close or overlap. There are three ways of trying to
correct these errors:

2Graph courtesy of Hector Zamora, DEFINITY.
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graph G {

node [shape=box,style=filled];

{node [width=.3,height=.3,shape=octagon,style=filled,color=skyblue] A1 A2 A3}

A -- A1 [label="l #6"];

A -- A2 [label="l #7"];

A -- A3 [label="l #8"];

{edge [style=invis]; A1 -- A2 -- A3}

edge [len=3]; /* applies to all following edges */

A -- B [label="l #1"]; A -- C [label="l #2"]; A -- D [label="l #3"];

A -- E [label="l #4"]; A -- F [label="l #5"]; B -- C [label="l #1"];

B -- E [label="l #2"]; B -- F [label="l #3"]; C -- D [label="l #1"];

D -- E [label="l #1"];

}

Figure 6: Node and Edge Options
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1) change the initial con�guration

2) adjust the solver parameters

3) edit the input edge lengths and weights.

3.1 Initial Con�guration

If no options are given, neato always makes the same drawing of a given graph �le, because
its initial node placement and the solver are deterministic. Random initial placement can
yield di�erent layouts. It is sometimes reasonable to make at least several di�erent trial
layouts, and accept the best one. Random initial placement is requested by setting the
value of the graph attribute start. If the value is a number, it is taken as a seed for the
random number generator. The layout is di�erent for each seed, but still deterministic. If
the value is not a number, the process ID or current time is used. Each run potentially
yields a di�erent drawing. For example:

$ neato -Tps -Gstart=rand file.dot > file.ps

3.2 Termination Threshold

The solver is a Newton-Raphson algorithm that moves a node with a maximal �e on every
iteration. The solver terminates when �e falls below some �. The default (:1) is low enough
that the layout is usually close to a local minimum, but not so low that the solver runs for
a long time without making signi�cant progress. Smaller values of � allow the solver run
longer and potentially give better layouts. Larger values can decrease neato's running time
but with a reduction in layout quality. This may be a desirable tradeo� for large graphs. �

is set in the graph's epsilon variable. It is convenient to do this on the command line:

$ neato -Tps -Gepsilon=.001 small.dot -o small.ps

$ neato -Tps -Gepsilon=1.5 big.dot -o big.ps

3.3 Edge Lengths and Weights

Since the layout depends on the input edge lengths and their weights, these can sometimes
be adjusted to good e�ect. The length of an edge is the preferred distance between the
endpoint nodes. Its weight is the strength of the corresponding spring, and a�ects the
cost if it is stretched or compressed. Invisible edges can also be inserted to adjust node
placement. In �gure 6, the length of some edges was set to 3 to make them longer than the
default. Also, the two invisible edges a�ect A1, A2, and A3.

There is also a way to also give the initial or �nal coordinates of individual nodes. The
initial position, formatted as two comma-separated numbers, is entered in a node's pos

attribute. If ! is given as a su�x, the node is also pinned down.
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graph G {

n0 -- n1 [len=2, style=bold];

n1 -- n2 -- n3 -- n0;

}
n0

n1

n3

n2

Figure 7: Example graph with an edge stretched

graph G {

n0 [ pos = "0,0!" ];

n1 [ pos = "2,0" ];

n2 [ pos = "2,2!" ];

n0 -- n1 -- n2 -- n3 -- n0;

}
n0

n1

n3

n2

Figure 8: Example graph with nodes pinned

4 Future Work

To improve clarity we would like to eliminate unintentionally overlapping nodes or edges.
Such errors could be avoided by using constraints. Constraints could also o�er users a
natural way to adjust layouts. One concern in introducing constrained optimization is that
we want to maintain interactive response time for moderate sized graphs.

Another idea is to use a more straightforward layout heuristic based on graph topology.
One approach often mentioned by researchers but seldom (if ever) implemented is to embed
a maximal planar subgraph, then route any remaining edges heuristically. We also intend
to eventually replace the straight line edges with splines that can bend around non-adjacent
nodes or edge labels.
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5 Acknowledgments

neato's layout heuristic follows the work of Kamada and Kawai [KK89]. The implementa-
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Name Default Values

Node Attributes

shape ellipse ellipse, box, circle, doublecircle, diamond,
plaintext, record, polygon

height,width .5,.75 height and width in inches
label node name any string
fontsize 14 point size of label
fontname Times-Roman font family name, e.g. Courier, Helvetica

fontcolor black type face color
style graphics options, e.g. bold, dotted, filled

color black node shape color
pos initial coordinates (append ! to pin node)

Edge Attributes

weight 1.0 strength of edge spring
label label, if not empty
fontsize 14 point size of label
fontname Times-Roman font family name
fontcolor black type face color
style graphics options, e.g. bold, dotted, dashed

color black edge stroke color
len 1.0 preferred length of edge
dir none forward, back, both, or none
decorate if set, draws a line connecting labels with their edges
id optional value to distinguish multiple edges

Graph Attributes

start seed for random number generator
size drawing bounding box, in inches
page unit of pagination, e.g. 8.5,11
margin .5,.5 margin included in page

label caption for graph drawing
fontsize 14 point size of label
fontname Times-Roman font family name
fontcolor black type face color
orientation portrait may be set to landscape

center when set, centers drawing on page

Table 1: Drawing attributes
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ABSTRACT

neato is a program that makes layouts of undirected graphs following the �lter model of
dag and dot. Its layout heuristic creates virtual physical models and runs an iterative
solver to �nd low energy con�gurations. The intended applications are in telecommunica-
tion networks, computer programming and software engineering. Here is a sample layout
depicting a typical entity-relationship database schema. It took 0.11 seconds of user time
to generate on an HP-9000/730 computer.
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